BHP BILLITON LTD Form 6-K April 24, 2008

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549

Form 6-K

REPORT OF FOREIGN PRIVATE ISSUER PURSUANT TO RULE 13a-16 OR 15d-16 UNDER THE SECURITIES EXCHANGE ACT OF 1934

April 23, 2008

BHP BILLITON LIMITED

BHP BILLITON PLC

(ABN 49 004 028 077)

(REG. NO. 3196209)

(Exact name of Registrant as specified in its charter)

(Exact name of Registrant as specified in its charter)

VICTORIA, AUSTRALIA

ENGLAND AND WALES

(Jurisdiction of incorporation or organisation)

 $(Juris diction\ of\ incorporation\ or\ organisation)$

180 LONSDALE STREET, MELBOURNE, VICTORIA

NEATHOUSE PLACE, VICTORIA, LONDON,

3000 AUSTRALIA

UNITED KINGDOM

(Address of principal executive offices)

(Address of principal executive offices)

Indicate by check mark whether the registrant files or will file annual reports under cover of Form 20-F or Form 40-F: [x] Form 20-F [x] Form 40-F

23 April 2008
If "Yes" is marked, indicate below the file number assigned to the registrant in connection with Rule 12g3-2(b): $\frac{n/a}{}$
Indicate by check mark whether the registrant by furnishing the information contained in this Form is also thereby furnishing the information to the Commission pursuant to Rule 12g3-2(b) under the Securities Exchange Act of 1934: $[\]$ Yes $[x]$ No
Indicate by check mark if the registrant is submitting the Form 6-K in paper as permitted by Regulation S-T Rule $101(b)(7)$: []
Rule 101(b)(1): []

BHP BILLITON PRODUCTION REPORT FOR THE NINE MONTHS ENDED 31 MARCH 2008

Number 14/08

BHP Billiton today released its production report for the nine months ended 31 March 2008. Throughout this report, unless otherwise stated, production volumes refer to BHP Billiton share and exclude suspended and sold operations.

- Year to date production increased for 12 commodities reflecting our strong track record of consistent growth on the back of projects delivered from our deep inventory of projects. First product was delivered from eight projects into commodity markets that remain strong.
- Significant increase in petroleum production with continuing ramp up of recently commissioned projects and strong facility and reservoir performance offsetting natural field decline. On track to deliver 10% volume growth for the 2008 financial year.
- Western Australia iron ore operations (Australia) achieved record quarterly and year to date production and shipments during a seasonally challenging quarter.
- Record year to date manganese ore and alloy production delivered in a strong price environment. Manganese ore also achieved quarterly production record. This was set despite restrictions on power consumption in South Africa.
- Record year to date copper production achieved as newly commissioned projects continue to ramp up in a period of strong pricing.
- The Yabulu Expansion Project (Australia) achieved first production during the guarter.

- Record year to date production of natural gas and alumina.
- Year to date production records achieved at the Worsley, Western Australia Iron Ore, GEMCO, TEMCO, Illawarra Coal, and Hunter Valley Coal (all Australia), Escondida (Chile), Paranam (Suriname), Alumar and Samarco (both Brazil), Samancor (South Africa) and Cerrejon Coal (Colombia) operations.
- Metallurgical coal production in Queensland (Australia) and nickel production at Cerro Matoso (Colombia) has resumed following extreme weather conditions and industrial action respectively. Ramp up to normal operating levels continuing.
- Southern Africa aluminium production was impacted by a mandatory 10 per cent reduction. in power consumption.

	MAR	MAR	MAR YTD 08	MAR Q08	MAR Q08
	2008	2008	VS	vs	vs
PETROLEUM	YTD	QTR	MAR YTD 07	MAR Q07	DEC Q07
Crude Oil, Condensate and Natural Gas Liquids ('000 bbl) (a)	47,837	18,441	13%	39%	23%
Natural Gas (bcf) (a)	272.65	85.75	6%	1%	-6%
Total Petroleum Products (million boe) (a)	93.27	32.73	10%	19%	8%

Total Petroleum Products -

Significant growth in production was mainly driven by the continued ramp up of Stybarrow (Australia), Genghis Khan and Atlantis (both USA) and excellent operated facility performance.

Crude Oil, Condensate and Natural Gas Liquids -

Production was higher than all comparative periods due to significant growth in high margin crude production. Continued ramp up of new projects and successful development drilling had a very positive impact. Partially offsetting this was the impact of natural field decline, unplanned interruption at North West Shelf (Australia) and the impact of cyclone activities in Western Australia.

Natural Gas -

Production was lower than the December 2007 quarter due to expected lower seasonal gas demand in southeast Australia and unplanned interruption at North West Shelf.

MAR	MAR	MAR YTD 08	MAR Q08	MAR Q08
WIAK	MAK	11000	Quo	Quo

Edgar Filing: BHP BILLITON LTD - Form 6-K

	2008	2008	vs	VS	vs
ALUMINIUM	YTD	QTR	MAR YTD 07	MAR Q07	DEC Q07
Alumina ('000 tonnes)	3,405	1,095	3%	1%	-5%
Aluminium ('000 tonnes)	993	318	-1%	-4%	-6%

Alumina -

Production and sales for the nine months ended March 2008 were all time records due to record performance from all operations.

Production was marginally lower than the December 2007 quarter. This primarily reflects reduced production at Worsley due to gas supply curtailments.

Aluminium

- Production was impacted by the mandatory 10 per cent reduction in power consumption across the Southern Africa smelters. This was in part offset by equalled quarterly and year to date record production from Alumar.

	MAR	MAR	MAR YTD 08	MAR Q08	MAR Q08
	2008	2008	VS	vs	vs
BASE METALS	YTD	QTR	MAR YTD 07	MAR Q07	DEC Q07
Copper ('000 tonnes)	984.8	328.9	8%	-8%	-6%
Lead (tonnes)	199,950	67,885	34%	7%	-4%
Zinc (tonnes)	101,036	35,970	27%	1%	29%
Silver ('000 ounces)	34,251	11,221	37%	2%	-6%
Uranium Oxide Concentrate (Uranium) (tonnes)	3,117	993	25%	12%	-17%

Copper -

Year to date production record was set with the continued ramp up of Escondida Sulphide Leach and Spence (both Chile) and Pinto Valley (USA). In aggregate, these projects contributed 166,000 tonnes during the nine months ended March 2008. This was achieved despite the impact of two earthquakes in Chile in the December 2007 quarter, and lower production from Antamina (Peru) and Olympic Dam (Australia).

Production was lower than the March 2007 and December 2007 quarters mainly due to lower grade and recovery from Escondida and unplanned interruptions at Olympic Dam.

Lead -

Year to date production increased due to the completion of the Cannington (Australia) rehabilitation project.

Zinc -

Production was higher than the nine months ended March 2007 and the December 2007 quarter due to higher grade and an increased proportion of zinc containing ore being processed at Antamina. The completion of the Cannington rehabilitation project also had a positive impact on the production for the nine months ended March 2008.

Silver -

Production for the nine months ended March 2008 improved significantly due to the successful completion of the Cannington rehabilitation project and record performance from Escondida and Antamina.

Uranium -

Production was higher than the nine months and quarter ended March 2007 due to ongoing progress at improving recovery and leach circuit performance at Olympic Dam.

Production was lower than the December 2007 quarter mainly due to decline in grade and scheduled maintenance.

	MAR	MAR	MAR YTD 08	MAR Q08	MAR Q08
	2008	2008	VS	vs	vs
DIAMONDS & SPECIALTY PRODUCTS	YTD	QTR	MAR YTD 07	MAR Q07	DEC Q07
Diamonds ('000 carats)	2,485	620	7%	-30%	-26%

Diamonds -

Production decreased versus the March 2007 and December 2007 quarters mainly due to lower grades. Although production was lower, it included an increased proportion of higher value carats. As Ekati (Canada) transitions from open pit mining to underground mining the mix of ore processed will change from time to time.

	MAR	MAR	MAR YTD 08	MAR Q08	MAR Q08
	2008	2008	VS	vs	vs
STAINLESS STEEL MATERIALS	YTD	QTR	MAR YTD 07	MAR Q07	DEC Q07
	125.3	43.0	-10%	-6%	-2%

Nickel

- Production in the nine months ended March 2008 was impacted by the industrial stoppage at Cerro Matoso, wet weather interruptions at Yabulu (Australia) and scheduled maintenance across all operations. This was partially offset by continued strong production from the Kwinana Nickel Refinery (Australia), which performed at near record levels.

The Yabulu Expansion Project delivered first production during the quarter, and the Ravensthorpe Nickel Operation (Australia) ramp up continues to progress in line with schedule.

	MAR	MAR	MAR YTD 08	MAR Q08	MAR Q08
	2008	2008	VS	vs	vs
IRON ORE	YTD	QTR	MAR YTD 07	MAR Q07	DEC Q07
Iron ore ('000 tonnes) (c)	81,646	28,033	13%	22%	1%

Iron Ore -

Record production and shipments were achieved for the nine months and quarter ended March 2008. Western Australia Iron Ore continued to perform strongly and set new year to date and quarterly production records. Samarco also set a year to date production record.

	MAR	MAR	MAR YTD 08	MAR Q08	MAR Q08
	2008	2008	VS	vs	vs
MANGANESE	YTD	QTR	MAR YTD 07	MAR Q07	DEC Q07
Manganese Ore ('000 tonnes)	4,724	1,666	5%	15%	3%
Manganese Alloy ('000 tonnes)	585	192	7%	-2%	-8%


Manganese Ore -

Record year to date and quarterly production achieved due to record or near record performance from all operations. This was achieved despite a mandatory 10% reduction in power consumption for the South African sinter plant and weather related interruptions at GEMCO.

Manganese Alloy -

Year to date production increased due to improved facility availability and utilisation at Samancor achieved in the December 2007 quarter and record performance from TEMCO.

Production for the March 2008 quarter was impacted by the mandatory 10% reduction in power consumption in South Africa.

	MAR	MAR	MAR YTD 08	MAR Q08	MAR Q08
	2008	2008	VS	vs	vs
			1445		
METALLURGICAL COAL	YTD	QTR	MAR YTD 07	MAR Q07	DEC Q07

Metallurgical Coal -

Production and shipments were significantly impacted by extreme wet weather experienced at Queensland Coal (Australia). Coal production has resumed but continues to be constrained as the recovery process proceeds and mines are brought back to full operational capacity. This was partially offset by record year to date performance at Illawarra Coal (Australia).

	MAR	MAR	MAR YTD 08	MAR Q08	MAR Q08
	2008	2008	VS	vs	vs
ENERGY COAL	YTD	QTR	MAR YTD 07	MAR Q07	DEC Q07
Energy Coal ('000 tonnes) (d)	59,496	19,264	-2%	-2%	-7%

Energy Coal -

Production for the March 2008 quarter was mainly impacted by scheduled longwall move at San Juan (USA). This was offset by continued strong production at Hunter Valley Coal which achieved its' third consecutive quarterly record.

- (a) Excluding Moranbah Coal Bed Methane (sold September 2006 quarter) and Typhoon / Boris (sold December 2006 quarter).
- (b) Earnings before interest and tax.
- (c) Excluding Goldsworthy operations which were suspended mid calendar year 2006.
- (d) Excluding Koornfontein operation which was sold effective 1 July 2007.

This report together with the Exploration and Development Report represent the Interim Management Statement for the purposes of the UK Listing Authority's Disclosure and Transparency Rules. There have been no significant changes in the financial position of the Group in the quarter ended 31 March 2008.

		QUA	RTER EN	DED	YEAR TO	O DATE	%	CHANC	iΕ
							MAR YTD 08	MAR Q08	MAR Q08
		MAR	DEC	MAR	MAR	MAR	vs	vs	VS
		2007	2007	2008	2008	2007	MAR YTD 07	MAR Q07	DEC Q07
PETROLEUM									
Crude oil & condensate	('000 bbl)	10,669	12,317	16,240	39,856	33,725	18%	52%	32%
Natural gas (a)	(bcf)	85.10	91.21	85.75	272.65	256.42	6%	1%	-6%
Natural gas liquid	('000 bbl)	2,626	2,685	2,201	7,981	8,503	-6%	-16%	-18%
Total Petroleum Products (a)	(million boe)	27.42	30.20	32.73	93.27	84.87	10%	19%	8%
ALUMINIUM									
Alumina	('000 tonnes)	1,085	1,157	1,095	3,405	3,316	3%	1%	-5%
Aluminium	('000 tonnes)	331	338	318	993	1,006	-1%	-4%	-6%
BASE METALS									
Copper	('000 tonnes)	357.6	348.1	328.9	984.8	908.0	8%	-8%	-6%
Lead	(tonnes)	63,443	70,544	67,885	199,950	149,557	34%	7%	-4%
Zinc	(tonnes)	35,760	27,807	35,970	101,036	79,547	27%	1%	29%
Gold	(ounces)	43,904	45,714	36,216	122,243	123,628	-1%	-18%	-21%
Silver	('000 ounces)	11,025	11,905	11,221	34,251	24,940	37%	2%	-6%
Uranium oxide concentrate	(tonnes)	883	1,191	993	3,117	2,498	25%	12%	-17%
Molybdenum	(tonnes)	288	679	580	1,952	1,775	10%	101%	-15%
DIAMONDS ANI SPECIALTY PRO									
Diamonds	('000 carats)	889	843	620	2,485	2,313	7%	-30%	-26%
STAINLESS									

		J	•						
STEEL MATERIAI	LS								
Nickel	('000 tonnes)	45.8	43.7	43.0	125.3	138.6	-10%	-6%	-2%
IRON ORE									
Iron ore (b)	('000 tonnes)	22,884	27,746	28,033	81,646	72,451	13%	22%	1%
MANGANE	ESE								
Manganese		1,452	1,613	1,666	4,724	4,490	5%	15%	3%
Manganese :	alloy ('000 tonnes)	196	209	192	585	546	7%	-2%	-8%
METALLUI COAL	RGICAL								
Metallurgica coal	al ('000 tonnes)	9,084	9,643	6,846	26,061	27,297	-5%	-25%	-29%
ENERGY C	COAL								
Energy coal		19,737	20,609	19,264	59,496	60,935	-2%	-2%	-7%
	cluding Moranba		Methane (s	old Septen	nber 2006	quarter) and	d Typhoo	on / Bori	s (sold
(b) Exc	cluding Goldswo	orthy operation	ons which v	were suspe	nded mid o	calendar			
year	r 2006.								

	BHP BILLITON ATTRIBUTABLE PRODUCTION								
								YEAR T	O DATE
		BHP Billiton	MAR	JUNE	SEPT	DEC	MAR	MAR	MAR
		Interest	2007	2007	2007	2007	2008	2008	2007
PETI	ROLEUM								
Produ	uction								

Crude oil & condensate	('000 bbl)	10,671	11,443	11,299	12,317	16,240	39,856	33,725
Natural gas	(bcf)	86.68	95.25	95.68	91.21	85.76	272.65	261.60
NGL (a)	('000 bbl)	2,626	3,018	3,095	2,685	2,201	7,981	8,504
Total Petroleum Products	(million boe)	27.68	30.47	30.34	30.20	32.73	93.27	85.73
ALUMINIUM								
ALUMINA								
Production ('000 tonnes)								
Worsley	86%	708	768	784	771	712	2,267	2,188
Suriname	45%	241	243	244	252	247	743	735
Alumar	36%	136	133	125	134	136	395	393
Total		1,085	1,144	1,153	1,157	1,095	3,405	3,316
ALUMINIUM								
Production ('000 tonnes)								
Hillside	100%	174	177	178	180	167	525	527
Bayside	100%	48	47	48	47	44	139	147
Alumar	40%	44	44	44	44	45	133	133
Mozal	47%	65	66	67	67	62	196	199
Total		331	334	337	338	318	993	1,006
BASE METALS (b)								
COPPER								
Payable metal in concentrate ('000 tonnes)								
Escondida	57.5%	178.1	170.5	167.0	177.3	157.0	501.3	468.4
Antamina	33.8%	24.2	26.4	27.5	29.3	24.1	80.9	87.3
Pinto Valley	100%	-	-	_	5.2	9.6	14.8	-
Total		202.3	196.9	194.5	211.8	190.7	597.0	555.7
Cathode ('000 tonnes)								
Escondida Escondida	57.5%	38.2	37.7	30.9	30.3	30.1	91.3	88.4
Cerro Colorado	100%	28.1	20.3	23.1	27.3	28.7	79.1	85.5
Spence (c)	100%	33.5	37.7	23.9	34.2	41.6		37.8
Pinto Valley	100%	1.9	1.9	1.8	1.7	1.8		
Olympic Dam	100%	53.6	47.6	33.6	42.8	36.0		

Total		155.3	145.2	113.3	136.3	138.2	387.8	352.3
LEAD								
Payable metal in								
concentrate (tonnes)								
Cannington	100%	62,974	62,409	61,073	70,369	67,505	198,947	148,405
Antamina	33.8%	469	317	448	175	380	1,003	1,152
Total		63,443	62,726	61,521	70,544	67,885	199,950	149,557
ZINC								
Payable metal in concentrate (tonnes)								
Cannington	100%	15,095	11,355	14,503	15,487	13,735	43,725	34,327
Antamina	33.8%	20,665	27,793	22,756	12,320	22,235	57,311	45,220
Total		35,760	39,148	37,259	27,807	35,970	101,036	79,547
Refer footnotes on page 4.								
BASE METALS (continued)								
GOLD								
Payable metal in concentrate (ounces)								
Escondida	57.5%	21,243	23,754	23,194	21,376	17,660	62,230	60,657
Olympic Dam (refined gold)	100%	22,661	28,689	17,119	24,338	18,555	60,012	62,971
Pinto Valley	100%	-	-	-	-	1	1	-
Total		43,904	52,443	40,313	45,714	36,216	122,243	123,628
SILVER								
Payable metal in concentra ounces)	ate ('000							
Escondida	57.5%	920	990	1,116	877	790	2,783	2,524
Antamina	33.8%	749	934	1,056	652	803	2,511	2,198
Cannington	100%	9,160	9,426	8,759	10,124	9,421	28,304	19,679
Olympic Dam (refined silver)	100%	196	275	193	239	169	601	539

Pinto Valley	100%	-	-	-	13	38	52	-
Total		11,025	11,625	11,124	11,905	11,221	34,251	24,940
URANIUM OXIDE CONCENTRATE								
Payable metal in concentrate (tonnes)								
Olympic Dam	100%	883	988	933	1,191	993	3,117	2,498
Total		883	988	933	1,191	993	3,117	2,498
MOLYBDENUM								
Payable metal in concentrate (tonnes)								
Antamina	33.8%	288	493	693	679	580	1,952	1,775
Total		288	493	693	679	580	1,952	1,775
DIAMONDS AND SPECIALTY PRODUCTS								
DIAMONDS								
Production ('000 carats)								
Ekati TM	80%	889	911	1,022	843	620	2,485	2,313
STAINLESS STEEL MATERIALS								
NICKEL								
Production ('000 tonnes)								
CMSA	99.9%	12.8	12.7	12.5	11.4	7.8	31.7	38.3
Yabulu	100%	8.0	9.3	5.5	6.0	6.2	17.7	22.8
Nickel West	100%	25.0	26.6	20.6	26.3	29.0	75.9	77.5
Total		45.8	48.6	38.6	43.7	43.0	125.3	138.6
Refer footnotes on page 4.								
IRON ORE Production ('000 tonnes) (d)								
	85%	6,711	7,665	7,904	8,147	7,265	23,316	21,641

Edgar Filing: BHP BILLITON LTD - Form 6-K

Mt Newman Joint Venture								
Goldsworthy Joint Venture	85%	142	195	134	170	386	690	1,032
Area C Joint Venture	85%	4,853	5,078	4,916	6,474	7,114	18,504	15,008
Yandi Joint Venture	85%	8,277	9,661	9,823	9,770	10,061	29,654	25,887
Jimblebar	85%	1,177	1,341	1,157	1,248	1,660	4,065	4,116
Samarco	50%	1,866	2,001	2,067	2,107	1,933	6,107	5,799
Total		23,026	25,941	26,001	27,916	28,419	82,336	73,483
MANGANESE								
MANGANESE ORES								
Saleable production ('000 tonnes)								
South Africa (e)	60%	632	631	572	709	877	2,158	1,939
Australia (e)	60%	820	888	873	904	789	2,566	2,551
Total		1,452	1,519	1,445	1,613	1,666	4,724	4,490
MANGANESE ALLOYS								
Saleable production ('000 tonnes)								
South Africa (e) (f)	60%	132	137	123	141	125	389	356
Australia (e)	60%	64	49	61	68	67	196	190
Total		196	186	184	209	192	585	546
METALLURGICAL COAL								
Production ('000 tonnes) (g)								
BMA	50%	6,478	7,442	5,917	6,138	4,232	16,287	19,241
BHP Mitsui Coal (h)	80%	1,067	2,047	1,454	1,526	847	3,827	2,813
Illawarra	100%	1,539	1,643	2,201	1,979	1,767	5,947	5,243
Total		9,084	11,132	9,572	9,643	6,846	26,061	27,297
ENERGY COAL								
Production ('000 tonnes)								
South Africa	100%	12,863	12,596	11,706	11,277	11,129	34,112	39,046
USA	100%	3,106	4,636	2,511	3,671	2,636	8,818	10,444

Austral	lia	100%	2,731	2,610	2,918	2,959	2,965		8,842	8,287	
Colom	bia	33%	2,230	2,441	2,488	2,702	2,534		7,724	6,965	
Total			20,930	22,283	19,623	20,609	19,264		59,496	64,742	
(a)		G and Ethane are reported as Natural Gas Liquid (NGL). Product-specific conversions are made NGL is reported in barrels of oil equivalent (boe).									
(b)	Metal produ	etal production is reported on the basis of payable metal.									
(c)	Spence oper	Spence operations were commissioned during the December 2006 quarter.									
(d)	Iron ore pro	duction is r	eported or	a wet ton	nes basis.						
(e)	Shown on 1	00% basis.	BHP Billi	ton interes	t in saleab	le producti	on is 60%				
(f)	Production i	ncludes M	edium Car	bon Ferro	Manganes	e.					
(g)	_	Metallurgical coal production is reported on the basis of saleable product. Production figures include ome thermal coal.									
(h)	Shown on 1	Shown on 100% basis. BHP Billiton interest in saleable production is 80%.									

PRODUCTION AND SHIPMENT REPORT							
SHIPMENT REPORT						YEAR T	O DATE
	MAR	JUNE	SEPT	DEC	MAR	MAR	MAR
	2007	2007	2007	2007	2008	2008	2007
PETROLEUM	2007	2007	2007	2007	2000	2000	2007
BHP Billiton attributable production	on unless othe	rwise state	d.			<u> </u>	
CRUDE OIL & CONDENSATE ('000 barrels)							
Bass Strait	3,144	3,929	3,638	3,103	2,918	9,659	10,302
North West Shelf	2,532	2,514	2,532	2,493	1,912	6,937	8,251
Atlantis (a)	-	-	-	615	3,320	3,935	-
Shenzi (a)	-	-	-	32	194	226	-
Liverpool Bay & Bruce / Keith	1,053	1,011	923	946	935	2,804	3,645
ROD / Ohanet	2,104	1,730	1,830	1,709	1,628	5,167	5,861
Other (b)	1,838	2,259	2,376	3,419	5,333	11,128	5,666
Total	10,671	11,443	11,299	12,317	16,240	39,856	33,725
NATURAL GAS (billion cubic feet) (c)							
Bass Strait	22.73	37.70	39.77	28.41	22.44	90.62	76.80

	-		-								
North We	est Shelf	27.10	25.70	27.17	28.13	26.43	81.73	79.80			
Atlantis (a)	-	-	-	0.12	1.54	1.66	-			
Shenzi (a)	-	-	-	0.01	0.06	0.07	-			
Liverpool / Keith	Bay & Bruce	15.18	12.71	8.87	12.70	12.32	33.89	40.55			
Other (b)		21.67	19.14	19.87	21.84	22.97	64.68	64.46			
Total		86.68	95.25	95.68	91.21	85.76	272.65	261.60			
NGL ('000 barre	els)										
Bass Stra	it	1,643	2,163	2,327	1,801	1,571	5,699	5,593			
North We	est Shelf	435	369	438	417	300	1,155	1,320			
Liverpool / Keith	Bay & Bruce	151	124	48	153	109	310	439			
ROD / OI	hanet	397	362	282	314	221	817	1,152			
Total		2,626	3,018	3,095	2,685	2,201	7,981	8,504			
TOTAL PETRO PRODUCTS	DLEUM	27.68	30.47	30.34	30.20	32.73	93.27	85.73			
(million barrels equivalent) (d)	of oil										
(a)	Atlantis and Ger Genghis Khan is	•		re commiss	sioned duri	ng the Dec	cember 2007 quar	ter.			
(b)	Genesis, Starlifte	Other includes Stybarrow, Griffin, Minerva, Angostura, Mad Dog, West Cameron 76, Mustang, Genesis, Starlifter, Green Canyon 18/60 and Pakistan. Stybarrow operation was commissioned during the December 2007 quarter.									
(c)	BHP Billiton con 2006 quarter.	mpleted the sale	e of its inte	rest in Mo	ranbah Co	al Bed Met	thane in the Septe	ember			
(d)	Total barrels of	oil equivalent (l	boe) conve	rsions are	based on 6	000scf of r	natural gas equals	1 boe.			

PRODUCTION AND SHIPMENT REPORT							
						YEAR T	O DATE
	MAR	JUNE	SEPT	DEC	MAR	MAR	MAR
	2007	2007	2007	2007	2008	2008	2007
ALUMINIUM							
BHP Billiton attributable production a	nd sales un	less otherv	wise stated	•			
('000 tonnes)							
ALUMINA							

Edgar Filing: BHP BILLITON LTD - Form 6-K

Product	ion							
Worsley	y, Australia	708	768	784	771	712	2,267	2,188
Paranar	n, Suriname	241	243	244	252	247	743	735
Alumar	, Brazil	136	133	125	134	136	395	393
Total		1,085	1,144	1,153	1,157	1,095	3,405	3,316
Sales	•							
Worsley	y, Australia	659	794	792	803	683	2,278	2,145
Paranar	n, Suriname	225	253	244	265	246	755	704
Alumar	, Brazil	120	164	131	128	135	394	365
Total (a		1,004	1,211	1,167	1,196	1,064	3,427	3,214
ALUMINIUM								
Product								
	e, South Africa	174	177	178	180	167	525	527
Bayside	e, South Africa	48	47	48	47	44	139	147
Alumar	, Brazil	44	44	44	44	45	133	133
Mozal,	Mozambique	65	66	67	67	62	196	199
Total		331	334	337	338	318	993	1,006
Sales								
Hillside	, South Africa	162	188	165	180	159	504	505
Bayside	e, South Africa	46	57	50	50	48	148	137
Alumar	, Brazil	38	47	43	48	43	134	124
Mozal,	Mozambique	64	70	56	72	57	185	190
Total		310	362	314	350	307	971	956
Tolling	Agreement (a)	33	32	33	33	30	96	77
		343	394	347	383	337	1,067	1,033
(a)	Equity Alumina is		o Alumini	um under a	a third par	ty tolling a	agreement. These	tonnages
	are allocated to equ	iny saies.						

PRODUCTION AND SHIPMENT REPORT		IPMENT							
								YEAR T	O DATE
			MAR	JUNE	SEPT	DEC	MAR	MAR	MAR

Edgar Filing: BHP BILLITON LTD - Form 6-K

		2007	2007	2007	2007	2008	2008	2007
BASE METALS								
BHP Billiton attributable patherwise stated.	production	and sales u	nless other	rwise state	d. Metals p	production	is payable metal	unless
Escondida, Chile								
Material mined (100%)	('000 tonnes)	85,654	88,409	82,995	88,319	102,566	273,880	239,025
Sulphide ore milled (100%)	('000 tonnes)	23,450	23,064	22,406	21,777	22,029	66,212	64,292
Average copper grade	(%)	1.62%	1.58%	1.63%	1.72%	1.56%	1.64%	1.58%
Production ex Mill (100%)	('000 tonnes)	319.1	306.0	305.2	316.8	285.0	907.0	842.5
Production								
Payable copper	('000 tonnes)	178.1	170.5	167.0	177.3	157.0	501.3	468.4
Payable gold concentrate	(fine ounces)	21,243	23,754	23,194	21,376	17,660	62,230	60,657
Copper cathode (EW)	('000 tonnes)	38.2	37.7	30.9	30.3	30.1	91.3	88.4
Payable silver concentrate	('000 ounces)	920	990	1,116	877	790	2,783	2,524
Sales								
Payable copper	('000 tonnes)	149.4	199.0	162.9	173.0	160.6	496.5	451.1
Payable gold concentrate	(fine ounces)	17,966	27,623	22,957	21,158	18,190	62,305	58,833
Copper cathode (EW)	('000 tonnes)	36.0	43.0	32.0	23.8	32.3	88.1	77.5
Payable silver concentrate	('000 ounces)	785	1,153	1,089	864	813	2,766	2,446
Cerro Colorado, Chile								
Material mined	('000 tonnes)	15,429	13,984	17,095	17,798	16,769	51,662	50,621
Ore milled	('000 tonnes)	4,398	4,365	4,278	4,410	4,437	13,125	13,484
Average copper grade	(%)	0.90%	0.79%	0.84%	1.03%	0.80%	0.88%	0.83%

Edgar Filing: BHP BILLITON LTD - Form 6-K

	<u> </u>	I			1		Ι	1 1	
	Production								
	Copper cathode (EW)	('000 tonnes)	28.1	20.3	23.1	27.3	28.7	79.1	85.5
	Sales								
	Copper cathode (EW)	('000 tonnes)	27.9	24.1	23.5	24.5	28.5	76.5	84.1
Spen	ce, Chile (a)								
	Material mined	('000 tonnes)	19,684	20,275	16,983	19,758	20,335	57,076	40,013
	Ore milled	('000 tonnes)	4,282	3,718	4,132	4,333	3,918	12,383	7,792
	Average copper grade	(%)	2.00%	1.80%	1.56%	1.61%	1.48%	1.60%	1.89%
	Production								
	Copper cathode (EW)	('000 tonnes)	33.5	37.7	23.9	34.2	41.6	99.7	37.8
	Sales								
	Copper cathode (EW)	('000 tonnes)	28.0	40.4	30.0	24.0	39.9	93.9	29.3
	(a) Spence ope	rations wer	e commissi	ioned durii	ng the Dec	ember 200	6 quarter.		
	mina, Peru Material mined (100%)	('000 tonnes)	24,428	29,034	31,145	31,289	29,095	91,529	82,662
	Sulphide ore milled (100%)	·	7,841	8,033	8,344	6,955	6,518	21,817	23,352
	Average head grades								
	- Copper	(%)	1.10%	1.17%	1.15%	1.47%	1.21%	1.27%	1.24%
	- Zinc	(%)	1.25%	1.46%	1.17%	0.69%	1.55%	1.16%	0.92%
	Production								
	Payable copper	('000 tonnes)	24.2	26.4	27.5	29.3	24.1	80.9	87.3
	Payable zinc	(tonnes)	20,665	27,793	22,756	12,320	22,235	57,311	45,220
	Payable silver	('000 ounces)	749	934	1,056	652	803	2,511	2,198

Payable lead	(tonnes)	469	317	448	175	380	1,003	1,152
Payable molybdenum	(tonnes)	288	493	693	679	580	1,952	1,775
Sales								
Payable copper	('000 tonnes)	25.0	20.7	28.5	32.6	20.4	81.5	94.2
Payable zinc	(tonnes)	15,479	31,914	25,306	12,458	16,630	54,394	43,556
Payable silver	('000 ounces)	707	645	917	719	512	2,148	2,185
Payable lead	(tonnes)	686	394	334	140	261	735	1,677
Payable molybdenum	(tonnes)	591	480	662	605	531	1,798	1,953
Cannington, Australia								
Material mined	('000 tonnes)	732	717	824	808	698	2,330	1,666
Ore milled	('000 tonnes)	704	688	661	755	726	2,142	1,660
Average head grades								
- Silver	(g/t)	477	493	478	489	472	480	428
- Lead	(%)	10.5%	10.3%	10.4%	10.7%	10.7%	10.6%	10.3%
- Zinc	(%)	3.6%	3.0%	3.5%	3.3%	3.2%	3.3%	3.5%
Production								
Payable silver	('000 ounces)	9,160	9,426	8,759	10,124	9,421	28,304	19,679
Payable lead	(tonnes)	62,974	62,409	61,073	70,369	67,505	198,947	148,405
Payable zinc	(tonnes)	15,095	11,355	14,503	15,487	13,735	43,725	34,327
Sales								
Payable silver	('000 ounces)	8,331	10,352	6,725	11,266	7,727	25,718	19,978
Payable lead	(tonnes)	56,726	66,411	46,148	78,325	53,167	177,640	147,941
Payable zinc	(tonnes)	11,585	14,888	9,257	19,577	9,629	38,463	30,246
Olympic Dam, Australi Material mined (a		2,103	2,255	2,424	2,520	2,333	7,277	6,311

C	Ore milled	('000 tonnes)	2,117	2,272	2,239	2,552	2,225	7,016	6,342
	Average copper grade	(%)	1.96%	1.93%	1.83%	1.86%	1.86%	1.85%	2.11%
	Average uranium grade	kg/t	0.59	0.58	0.57	0.63	0.59	0.60	0.58
E	Production								
C	Copper cathode ER)	('000 tonnes)	50.2	44.1	30.6	40.2	32.9	103.7	124.0
	Copper cathode EW)	('000 tonnes)	3.4	3.5	3.0	2.6	3.1	8.7	10.9
	Jranium oxide concentrate	(tonnes)	883	988	933	1,191	993	3,117	2,498
F	Refined gold	(fine ounces)	22,661	28,689	17,119	24,338	18,555	60,012	62,971
F	Refined silver	('000 ounces)	196	275	193	239	169	601	539
S	Sales								
	Copper cathode ER)	('000 tonnes)	51.6	45.2	30.7	41.0	31.9	103.6	126.9
	Copper cathode EW)	('000 tonnes)	4.6	4.4	3.1	2.5	2.3	7.9	10.8
	Jranium oxide concentrate	(tonnes)	1,043	646	562	346	1,182	2,090	2,672
F	Refined gold	(fine ounces)	22,983	27,589	20,118	21,760	19,767	61,645	64,620
F	Refined silver	('000 ounces)	183	294	192	237	173	602	528
_									
(:	a) Material mi	ned refers	to run of m	ine ore mi	ned and ho	oisted.			
Pinto V	Valley, USA								
	Production								
C	Copper concentrate a)	('000 tonnes)	-	-	-	5.2	9.6	14.8	-
C	Copper cathode EW)	('000 tonnes)	1.9	1.9	1.8	1.7	1.8	5.3	5.7
P	Payable silver (a)	('000 ounces)	-	-	-	13.3	38.4	51.7	-
F	Payable gold (a)		_	_	_	-	1.3	1.3	-

concentrate cathode silver gold Production	('000 tonnes) ('000 tonnes) ('000 ounces) ('000 ounces)	1.5	2.5	0.9	0.9	9 4	7.9	10.5 5.8 51.7	4.7
cathode	tonnes) ('000 tonnes) ('000 ounces) ('000 ounces)	1.5	2.5	0.9	0.9	9 4	1.0	5.8	4.7
silver	('000 tonnes) ('000 ounces) ('000 ounces)	1.5	2.5	0.9					4.7
gold	ounces) ('000 ounces)	-	-	-	13.3	3	3.4	51.7	_
<u> </u>	ounces)	-	_		Ī				
Production	manti of 1	I		-		- 1	3	1.3	-
	restarted (during the D	ecember 2	2007 quart	er.				
				_					
ON AND SH	IPMENT							T	
									O DATE
			MAR	JUNE	SEPT	DEC	MAR		MAR
AND CDEC			2007	2007	2007	2007	2008	2008	2007
AND SPEC	JALII								
attributable	production	n and sales u	ınless othe	rwise state	ed.				
	00%)	('000 tonnes)	1,046	1,194	1,009	1,080	967	3,056	3,345
action		('000 carats)	889	911	1,022	843	620	2,485	2,313
	AND SPEC attributable ada Processed (10)	ada Processed (100%)	AND SPECIALTY attributable production and sales under the sales of th	MAR 2007 AND SPECIALTY attributable production and sales unless othe ada Processed (100%) ('000 1,046 tonnes) action ('000 889)	MAR JUNE 2007 2007 AND SPECIALTY attributable production and sales unless otherwise state ada Processed (100%) ('000 1,046 1,194 tonnes) action ('000 889 911	MAR JUNE SEPT 2007 2007 2007 AND SPECIALTY attributable production and sales unless otherwise stated. ada Processed (100%) ('000 1,046 1,194 1,009 tonnes) action ('000 889 911 1,022	MAR JUNE SEPT DEC 2007 2007 2007 2007 AND SPECIALTY attributable production and sales unless otherwise stated. Processed (100%) ('000 1,046 1,194 1,009 1,080 tonnes) action ('000 889 911 1,022 843)	MAR JUNE SEPT DEC MAR 2007 2007 2007 2007 2008 AND SPECIALTY attributable production and sales unless otherwise stated. Processed (100%) ('000 1,046 1,194 1,009 1,080 967 tonnes) action ('000 889 911 1,022 843 620	MAR JUNE SEPT DEC MAR MAR 2007 2007 2007 2007 2008 2008 AND SPECIALTY attributable production and sales unless otherwise stated. Processed (100%) ('000 1,046 1,194 1,009 1,080 967 3,056 tonnes) action ('000 889 911 1,022 843 620 2,485

BHP Billiton attributable production and sales unless otherwise stated.

('000 to	nnes)							
NICKE	<u> </u>							
CMSA,	Colombia							
	Production	12.8	12.7	12.5	11.4	7.8	31.7	38.3
	Sales	12.4	12.5	6.9	13.2	13.6	33.7	38.5
Yabulu,	Australia							
	Production							
	Nickel metal	8.0	9.3	5.5	6.0	6.2	17.7	22.8
	Cobalt	0.4	0.5	0.5	0.4	0.3	1.2	1.2
	Sales						H	
	Nickel metal	7.1	9.6	5.3	6.3	6.5	18.1	20.3
	Cobalt	0.4	0.5	0.4	0.5	0.4	1.3	1.2
Nickel V	West, Australia							
	Production							
	Nickel contained in concentrate	-	0.9	-	1.2	1.3	2.5	-
	Nickel contained in finished matte	12.9	13.2	3.9	8.5	10.3	22.7	36.4
	Nickel metal	12.1	12.5	16.7	16.6	17.4	50.7	41.1
	Nickel production	25.0	26.6	20.6	26.3	29.0	75.9	77.5
	Sales						H	
	Nickel contained in concentrate	-	0.9	-	0.9	0.6	1.5	-
	Nickel contained in finished matte	9.9	15.1	6.2	9.5	9.4	25.1	32.7
	Nickel metal	14.2	11.5	14.7	14.4	15.7	44.8	41.4
	Nickel sales	24.1	27.5	20.9	24.8	25.7	71.4	74.1

DUCTION MENT RE								
							YEAR T	O DATE
		MAR	JUNE	SEPT	DEC	MAR	MAR	MAR
		2007	2007	2007	2007	2008	2008	2007

000 tonnes)							
RON ORE (a)							
ilbara, Australia	+						
Production Mt Navyman Jaint	6 711	7.665	7.004	0 147	7.265	22.216	21.67
Mt Newman Joint Venture	6,711	7,665	7,904	8,147	7,265	23,316	21,64
Goldsworthy Joint Venture	142	195	134	170	386	690	1,03
Area C Joint Venture	4,853	5,078	4,916	6,474	7,114	18,504	15,00
Yandi Joint Venture	8,277	9,661	9,823	9,770	10,061	29,654	25,88
Jimblebar	1,177	1,341	1,157	1,248	1,660	4,065	4,1
Total (BHP Billiton share)	21,160	23,940	23,934	25,809	26,486	76,229	67,68
Total production (100%)	24,896	28,165	28,159	30,363	31,160	89,682	79,63
Shipments							
Lump	5,193	5,753	6,076	7,179	7,603	20,858	17,4
Fines	15,454	17,458	17,979	18,847	19,714	56,540	50,1
Total (BHP Billiton share)	20,647	23,211	24,055	26,026	27,317	77,398	67,6
Total sales (100%)	24,290	27,307	28,300	30,619	32,138	91,057	79,59
(a) Iron ore producti	on and shipme	nts are repo	orted on a	wet tonnes	basis.		
amarco, Brazil							
Production	1,866	2,001	2,067	2,107	1,933	6,107	5,79
Shipments	1,684	2,159	1,850	2,316	1,589	5,755	5,9
RODUCTION AND HIPMENT REPORT							
						YEAR TO	O DAT
	MAR	JUNE	SEPT	DEC	MAR	MAR	MAR
	2007	2007	2007	2007	2008	2008	2007

(1000)								
('000 tonnes)	1							
MANGANES	SE ORE						1 1	
South Africa								
Saleab	le production (a)	632	631	572	709	877	2,158	1,939
<u>Australia</u>								
Saleab	le production (a)	820	888	873	904	789	2,566	2,551
MANGANES	SE ALLOY							
South Africa							1 1	
Saleab (b)	le production (a)	132	137	123	141	125	389	356
Australia		+ +						
Saleab	le production (a)	64	49	61	68	67	196	190
(a)	Shown on 100% bas	DUD D:11:42	on interest	in colocbl	a producti	on is 60%		
(a) (b)	Production includes					011 18 00 /0.		

PRODUCTION AND								
SHIPMENT REPORT								
							YEAR T	O DATE
		MAR	JUNE	SEPT	DEC	MAR	MAR	MAR
		2007	2007	2007	2007	2008	2008	2007
METALLURGICAL COAL								
BHP Billiton attributable produ	action a	nd sales ur	nless other	wise stated	1.			
('000 tonnes)								
METALLURGICAL COAL								
(a)								
Queensland, Australia								
Production								
<u>BMA</u>								
Blackwater		1,484	1,730	1,407	1,370	1,345	4,122	4,408

Edgar Filing: BHP BILLITON LTD - Form 6-K

	Goonyell	a	1,896	2,268	1,677	1,505	1,117		4,299	5,084	
	Peak Dov	vns	1,076	1,045	881	1,243	849		2,973	3,439	
	Saraji		883	939	777	890	376		2,043	2,458	
	Norwich	Park	745	797	502	576	306		1,384	2,053	
	Gregory .	Joint Venture	394	663	673	554	239		1,466	1,799	
	BMA tota	al	6,478	7,442	5,917	6,138	4,232		16,287	19,241	
	BHP Mit	sui Coal (b)									
	South Wa	alker Creek	785	982	939	868	438		2,245	2,440	
	Poitrel (c)	282	1,065	515	658	409		1,582	373	
	BHP Mit	sui Coal total	1,067	2,047	1,454	1,526	847		3,827	2,813	
	Queensla	nd total	7,545	9,489	7,371	7,664	5,079		20,114	22,054	
	Shipment	s									
	Coking co		5,368	5,684	5,479	5,875	3,790		15,144	15,598	
	Weak col		1,710	1,804	1,668	1,966	1,726		5,360	5,059	
	Thermal	coal	419	854	516	328	497		1,341	1,265	
	Total		7,497	8,343	7,663	8,169	6,013		21,845	21,922	
	(a)	Metallurgical co include some the	coal production is reported on the basis of saleable product. Production fig thermal coal.								
	(b)	Shown on 100%	basis. BHP Bil	liton inter	est in salea	ıble produ	ction is 80	%.			
	(c)	Poitrel was com	missioned durin	g the Dec	ember 200	6 quarter.					
Illawa	arra, Austra	alia									
	Production	n	1,539	1,643	2,201	1,979	1,767		5,947	5,243	
	Shipment	S									
	Coking c		1,624	1,724	1,906	1,851	1,549		5,306	4,573	
	Thermal		175	288	199	290	194		683	643	
	Total		1,799	2,012	2,105	2,141	1,743		5,989	5,216	
			·	·		·	·				